Molecular Pathology


Hugues DE THÉ
Collège de France courses


Caroline BERTHIER IE, College de France

Thassadite DIRAMI PhD, IR


 Gaël FORTIN Doctorant




Fang QIU Postdoc



Meet the team


Pierre BERCIER Doctorant

Caroline BERTHIER IE, Collège de France



Domitille REROLLE Doctorante


Hsin-Chieh WU Postdoc

Collège de France



APL pathogenesis
Acute Promyelocytic Leukaemia, APL, is a simple model of cancer, as it appears to be primarily a monogenic disease driven by the PML/RARA fusion protein. PML/RARA is a transcriptional repressor that inhibits myeloid differentiation and enhances the survival and proliferation of early myeloid progenitors. PML/RARA also disrupts PML nuclear bodies, providing a striking link between altered nuclear organisation and oncogenesis reviewed in (de The and Chen, 2010; de The et al., 2017; Lallemand-Breitenbach and de The, 2018).

Two clinically highly efficient drugs, retinoic acid (RA) and arsenic were discovered in China. RA-induced reversion of PML/RARA transcriptional repression and gene re-activation was thought to be the molecular basis for the therapeutic effect of RA. Yet, this model could not explain the action of arsenic (Zhu et al., 2002). Remarkably both RA and arsenic initiate PML/RARA degradation. Although empirically discovered, these constitute oncogene-targeted therapies and have become the paradigm for efficient therapy through oncoprotein hyper-catabolism (de The et al., 2017).
PML/RARA degradation and/or re-activation, yields in vivo differentiation, which is responsible for the massive tumor debulking. Yet, several studies, including our own, have shown that this is insufficient for cure (Nasr et al., 2008). Actually, the combination of RA and arsenic can yield APL cure, in mouse models as well as in patients (Lallemand-Breitenbach et al., 1999; Lo-Coco et al., 2013). Mechanistically, APL eradication requires PML and accordingly, hotspot mutations in the normal PML protein were found in therapy-resistant patients (Ablain et al., 2014; Lehmann-Che et al., 2014). It is presumed that restoration of PML nuclear bodies (see below) drives senescence of remaining leukemia-initiating APL cells. Altogether, APL is not only a clinical success story with almost all patients cured by targeted therapies, but also one of the too rare examples where cure is mechanistically understood in molecular and cellular details.
Current work on this disease involves exploration of the basis for APL initiation through deregulated retinoic acid signaling. Indeed, the rare APL variants not expressing PML/RARA constantly involve retinoic acid receptors (Geoffroy and de The, 2020). We are also interested in structure/function analyses of PML, notably in the context of APL therapy. Taken the key role of PML for the eradication of the disease, we are interested in identifying the mechanisms and pathways that ensure definitive APL clearance downstream of PML. Finally, we are interested in discovering other conditions where PML may similarly drive therapy response. One of them, myeloproliferative neoplasms with Jak2 mutation, was recently identified (Dagher et al., 2021). Others, including therapy of NPM1c-driven AMLs, are under study.
PML nuclear bodies
PML is the key organiser of PML nuclear bodies (NBs), nuclear matrix-associated small spherical compartments, which recruit an ever growing number of partner proteins (Lallemand-Breitenbach and de The, 2010; Lallemand-Breitenbach and de The, 2018). PML and NBs fine-tune a wide variety of processes (senescence, metabolism, self-renewal, apoptosis), most likely through facilitation of partner protein post-translational modifications, resulting in partner sequestration, activation or degradation. As stated above, PML NBs are required for APL cure (Ablain et al., 2014). Moreover, they are directly targeted by arsenic which enforces NB biogenesis through direct binding (Jeanne et al., 2010; Lallemand-Breitenbach et al., 2001; Zhu et al., 1997). PML NBs are also regulated by multiple cellular stresses: viral infection, DNA-damage, transformation, oxidative stress. While Pml-/- mice are devoid of NBs, develop normally and live well, we demonstrated that redox signalling and response to oxidative stress are profoundly altered in Pml-/- mice (Niwa-Kawakita et al., 2017).
PML was the first protein identified as a major target of conjugation by the SUMO ubiquitin-like peptide. PML sumoylation (on one of the three sites), drives recruitment of partners, through their SUMO-interacting motif (SIM) (Sahin et al., 2014). We identified PML as the first protein degraded by a SUMO-initiated, ubiquitin-mediated proteolysis pathway initiated by direct arsenic binding and disulphide-initiated dimerization (Jeanne et al., 2010; Lallemand-Breitenbach et al., 2008; Lallemand-Breitenbach et al., 2001). These studies highlight the intimate connexions between PML NBs and protein degradation, which are currently being explored in vivo.
Current work on this topic includes identification of PML modifications under stress in vivo, analyses of oxidative stress responses in a series of PML knock-in alleles with various defects in PML NB formation and bio-physical characterization of NB dynamics.

Some key references
► Ablain, J., Rice, K., Soilihi, H., de Reynies, A., Minucci, S., and de The, H. (2014). Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nature medicine 20, 167-174.
► Dagher, T., Maslah, N., Edmond, V., Cassinat, B., Vainchenker, W., Giraudier, S., Pasquier, F., Verger, E., Niwa-Kawakita, M., Lallemand-Breitenbach, V., et al. (2021). JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. J Exp Med 218.
► de The, H., and Chen, Z. (2010). Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 10, 775-783.
► de The, H., Pandolfi, P.P., and Chen, Z. (2017). Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure. Cancer Cell 32, 552-560.
► Geoffroy, M.C., and de The, H. (2020). Classic and Variants APLs, as Viewed from a Therapy Response. Cancers (Basel) 12.
► Jeanne, M., Lallemand-Breitenbach, V., Ferhi, O., Koken, M., Le Bras, M., Duffort, S., Peres, L., Berthier, C., Soilihi, H., Raught, B., et al. (2010). PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 18, 88-98.
► Lallemand-Breitenbach, V., and de The, H. (2010). PML nuclear bodies. Cold Spring Harb Perspect Biol 2, a000661.
► Lallemand-Breitenbach, V., and de The, H. (2018). PML nuclear bodies: from architecture to function. Curr Opin Cell Biol 52, 154-161.
► Lallemand-Breitenbach, V., Guillemin, M.-C., Janin, A., Daniel, M.-T., Degos, L., Kogan, S.C., Bishop, J.M., and de The, H. (1999). Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J Exp Med 189, 1043-1052.
► Lallemand-Breitenbach, V., Jeanne, M., Benhenda, S., Nasr, R., Lei, M., Peres, L., Zhou, J., Zhu, J., Raught, B., and de The, H. (2008). Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10, 547-555.
► Lallemand-Breitenbach, V., Zhu, J., Puvion, F., Koken, M., Honore, N., Doubeikovsky, A., Duprez, E., Pandolfi, P.P., Puvion, E., Freemont, P., et al. (2001). Role of Promyelocytic Leukemia (PML) Sumolation in Nuclear Body Formation, 11S Proteasome Recruitment, and As(2)O(3)-induced PML or PML/Retinoic Acid Receptor alpha Degradation. J Exp Med 193, 1361-1372.
► Lehmann-Che, J., Bally, C., and de The, H. (2014). therapy resistance in APL. New Engl J Med 371, 1171-1172.
► Lo-Coco, F., Avvisati, G., Vignetti, M., Thiede, C., Orlando, S.M., Iacobelli, S., Ferrara, F., Fazi, P., Cicconi, L., Di Bona, E., et al. (2013). Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. The New England journal of medicine 369, 111-121.
► Nasr, R., Guillemin, M.C., Ferhi, O., Soilihi, H., Peres, L., Berthier, C., Rousselot, P., Robledo-Sarmiento, M., Lallemand-Breitenbach, V., Gourmel, B., et al. (2008). Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med 14, 1333-1342.
► Niwa-Kawakita, M., Ferhi, O., Soilihi, H., Le Bras, M., Lallemand-Breitenbach, V., and de The, H. (2017). PML is a ROS sensor activating p53 upon oxidative stress. J Exp Med 214, 3197-3206.
► Sahin, U., Ferhi, O., Jeanne, M., Benhenda, S., Berthier, C., Jollivet, F., Niwa-Kawakita, M., Faklaris, O., Setterblad, N., de The, H., et al. (2014). Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. The Journal of cell biology 204, 931-945.
► Zhu, J., Chen, Z., Lallemand-Breitenbach, V., and de Thé, H. (2002). How acute promyelocytic leukemia revived arsenic. Nature Reviews on Cancer 2, 705-713.
► Zhu, J., Koken, M.H.M., Quignon, F., Chelbi-Alix, M.K., Degos, L., Wang, Z.Y., Chen, Z., and de The, H. (1997). Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci USA 94, 3978-3983.
The group’s primary interest is to explore the connections between genetic events driving cancer development and response to therapy, particularly unconventional ones.
In acute promyelocytic leukemia (APL), we have made key contributions to the understanding of the basis for leukemic transformation by the PML/RARA fusion protein and arsenic or retinoic acid therapy. Our studies have revealed that both agents bind PML/RARA and thus constitute targeted therapies. We also demonstrated the key role of PML/RARA degradation by retinoic acid and arsenic in APL responses and the central role of PML in its cure in mice or patients.

Over the years, the group has also invested very significant efforts to decipher the biochemical assembly and normal function(s) of PML NBs. Assembly of PML NB occurs through PML oxidation. Then SUMO conjugation of the PML shell allows recruitment of partner proteins, followed by their subsequent SUMO-conjugation. These proteins may be degraded by the SUMO-initiated, ubiquitin activated proteolysis pathway that we discovered by analyzing PML/RARA and PML degradation induced by arsenic.

Our current work, supported by the ERC (2019-2024), aims at harnessing PML nuclear bodies to activate a PML/p53 senescence axis in the context of other forms of leukemia treated with other drugs, including interferons and Actinomycin D.
Collectively, our work is anchored at the rich interface between very basic issues of regulation of gene expression, protein post-translational modifications and cell biology, in the context of human cancer biology and novel therapies. Importantly, the strategies that derive from the models generated in the lab have been successfully implemented in APL patients. We now aim at new breakthroughs in other cancers.
Main publications – 2015-2021
Dassouki, Z., U. Sahin, H. El Hajj, F. Jollivet, Y. Kfoury, V. Lallemand-Breitenbach, O. Hermine, H. de The and A. Bazarbachi (2015). « ATL response to arsenic/interferon therapy is triggered by SUMO/PML/RNF4-dependent Tax degradation. » Blood 125(3): 474-482.
El Hajj, H., Z. Dassouki, C. Berthier, E. Raffoux, L. Ades, O. Legrand, R. Hleihel, U. Sahin, N. Tawil, A. Salameh, K. Zibara, N. Darwiche, M. Mohty, H. Dombret, P. Fenaux, H. de The and A. Bazarbachi (2015). « Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. » Blood 125(22): 3447-3454.
Gaillard, C., T. A. Tokuyasu, G. Rosen, J. Sotzen, A. Vitaliano-Prunier, R. Roy, E. Passegue, H. de The, M. E. Figueroa and S. C. Kogan (2015). « Transcription and methylation analyses of preleukemic promyelocytes indicate a dual role for PML/RARA in leukemia initiation. » Haematologica 100(8): 1064-1075.
Ivanschitz, L., Y. Takahashi, F. Jollivet, O. Ayrault, M. Le Bras and H. de The (2015). « PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. » Proc Natl Acad Sci U S A 112(46): 14278-14283.
Yuan, H., B. Wen, X. Liu, C. Gao, R. Yang, L. Wang, S. Chen, Z. Chen, H. de The, J. Zhou and J. Zhu (2015). « CCAAT/enhancer-binding protein alpha is required for hepatic outgrowth via the p53 pathway in zebrafish. » Sci Rep 5: 15838.
Yuan, H., T. Zhang, X. Liu, M. Deng, W. Zhang, Z. Wen, S. Chen, Z. Chen, H. de The, J. Zhou and J. Zhu (2015). « Sumoylation of CCAAT/enhancer-binding protein alpha is implicated in hematopoietic stem/progenitor cell development through regulating runx1 in zebrafish. » Sci Rep 5: 9011.
Ablain, J., B. Poirot, C. Esnault, J. Lehmann-Che and H. de The (2016). « p53 as an Effector or Inhibitor of Therapy Response. » Cold Spring Harb Perspect Med 6(1): a026260.
Ferhi, O., L. Peres, S. Tessier, H. de The and V. Lallemand-Breitenbach (2016). « Comment on « SUMO deconjugation is required for arsenic-triggered ubiquitylation of PML ». » Sci Signal 9(440): tc1.
Tessier, S., N. Martin-Martin, H. de The, A. Carracedo and V. Lallemand-Breitenbach (2016). « PML, a protein at the cross road of oxidative stress and metabolism. » Antioxid Redox Signal.
de The, H., P. P. Pandolfi and Z. Chen (2017). « Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure. » Cancer Cell 32(5): 552-560.
Niwa-Kawakita, M., O. Ferhi, H. Soilihi, M. Le Bras, V. Lallemand-Breitenbach and H. de The (2017). « PML is a ROS sensor activating p53 upon oxidative stress. » J Exp Med 214(11): 3197-3206.
Ribet, D., V. Lallemand-Breitenbach, O. Ferhi, M. A. Nahori, H. Varet, H. de The and P. Cossart (2017). « Promyelocytic Leukemia Protein (PML) Controls Listeria monocytogenes Infection. » MBio 8(1).
Wen, B., H. Yuan, X. Liu, H. Wang, S. Chen, Z. Chen, H. de The, J. Zhou and J. Zhu (2017). « GATA5 SUMOylation is indispensable for zebrafish cardiac development. » Biochim Biophys Acta 1861(7): 1691-1701.
de The, H. (2018). « Differentiation therapy revisited. » Nat Rev Cancer 18(2): 117-127.
Dubuisson, L., F. Lormieres, S. Fochi, J. Turpin, A. Pasquier, E. Douceron, A. Oliva, A. Bazarbachi, V. Lallemand-Breitenbach, H. De The, C. Journo and R. Mahieux (2018). « Stability of HTLV-2 antisense protein is controlled by PML nuclear bodies in a SUMO-dependent manner. » Oncogene 37(21): 2806-2816.
Gachet, S., T. El-Chaar, D. Avran, E. Genesca, F. Catez, S. Quentin, M. Delord, G. Therizols, D. Briot, G. Meunier, L. Hernandez, M. Pla, W. K. Smits, J. G. Buijs-Gladdines, W. Van Loocke, G. Menschaert, I. Andre-Schmutz, T. Taghon, P. Van Vlierberghe, J. P. Meijerink, A. Baruchel, H. Dombret, E. Clappier, J. J. Diaz, C. Gazin, H. de The, F. Sigaux and J. Soulier (2018). « Deletion 6q Drives T-cell Leukemia Progression by Ribosome Modulation. » Cancer Discov 8(12): 1614-1631.
Gaillard, C., S. Surianarayanan, T. Bentley, M. R. Warr, B. Fitch, H. Geng, E. Passegue, H. de The and S. C. Kogan (2018). « Identification of IRF8 as a potent tumor suppressor in murine acute promyelocytic leukemia. » Blood Adv 2(19): 2462-2466.
Lallemand-Breitenbach, V. and H. de The (2018). « PML nuclear bodies: from architecture to function. » Curr Opin Cell Biol 52: 154-161.
Lehmann-Che, J., C. Bally, E. Letouze, C. Berthier, H. Yuan, F. Jollivet, L. Ades, B. Cassinat, P. Hirsch, A. Pigneux, M. J. Mozziconacci, S. Kogan, P. Fenaux and H. de The (2018). « Dual origin of relapses in retinoic-acid resistant acute promyelocytic leukemia. » Nat Commun 9(1): 2047.
Wang, L., X. Liu, H. Wang, H. Yuan, S. Chen, Z. Chen, H. de The, J. Zhou and J. Zhu (2018). « RNF4 regulates zebrafish granulopoiesis through the DNMT1-C/EBPalpha axis. » FASEB J 32(9): 4930-4940.
Wang, P., S. Benhenda, H. Wu, V. Lallemand-Breitenbach, T. Zhen, F. Jollivet, L. Peres, Y. Li, S. J. Chen, Z. Chen, H. de The and G. Meng (2018). « RING tetramerization is required for nuclear body biogenesis and PML sumoylation. » Nat Commun 9(1): 1277.
Auvin, S., H. Ozturk, Y. T. Abaci, G. Mautino, F. Meyer-Losic, F. Jollivet, T. Bashir, H. de The and U. Sahin (2019). « A molecule inducing androgen receptor degradation and selectively targeting prostate cancer cells. » Life Sci Alliance 2(4).
Esnault, C., R. Rahme, K. L. Rice, C. Berthier, C. Gaillard, S. Quentin, A. L. Maubert, S. Kogan and H. de The (2019). « FLT3-ITD impedes retinoic acid, but not arsenic, responses in murine acute promyelocytic leukemias. » Blood.
Gentric, G., Y. Kieffer, V. Mieulet, O. Goundiam, C. Bonneau, F. Nemati, I. Hurbain, G. Raposo, T. Popova, M. H. Stern, V. Lallemand-Breitenbach, S. Muller, T. Caneque, R. Rodriguez, A. Vincent-Salomon, H. de The, R. Rossignol and F. Mechta-Grigoriou (2019). « PML-Regulated Mitochondrial Metabolism Enhances Chemosensitivity in Human Ovarian Cancers. » Cell Metab 29(1): 156-173 e110.
McKenzie, M. D., M. Ghisi, E. P. Oxley, S. Ngo, L. Cimmino, C. Esnault, R. Liu, J. M. Salmon, C. C. Bell, N. Ahmed, M. Erlichster, M. T. Witkowski, G. J. Liu, M. Chopin, A. Dakic, E. Simankowicz, G. Pomilio, T. Vu, P. Krsmanovic, S. Su, L. Tian, T. M. Baldwin, D. A. Zalcenstein, L. DiRago, S. Wang, D. Metcalf, R. W. Johnstone, B. A. Croker, G. I. Lancaster, A. J. Murphy, S. H. Naik, S. L. Nutt, V. Pospisil, T. Schroeder, M. Wall, M. A. Dawson, A. H. Wei, H. de The, M. E. Ritchie, J. Zuber and R. A. Dickins (2019). « Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia. » Cell Stem Cell 25(2): 258-272 e259.
Yuan, H., S. Gao, H. Chen, X. Liu, J. Zhou, H. de The and J. Zhu (2019). « Primitive macrophages are dispensable for HSPC mobilization and definitive hematopoiesis. » Blood 134(9): 782-784.
Geoffroy, M. C. and H. de The (2020). « Classic and Variants APLs, as Viewed from a Therapy Response. » Cancers (Basel) 12(4).
Humeau, J., A. Sauvat, G. Cerrato, W. Xie, F. Loos, F. Iannantuoni, L. Bezu, S. Levesque, J. Paillet, J. Pol, M. Leduc, L. Zitvogel, H. de The, O. Kepp and G. Kroemer (2020). « Inhibition of transcription by dactinomycin reveals a new characteristic of immunogenic cell stress. » EMBO Mol Med 12(5): e11622.
Marcais, A., L. Cook, A. Witkover, V. Asnafi, V. Avettand-Fenoel, R. Delarue, M. Cheminant, D. Sibon, L. Frenzel, H. de The, C. R. M. Bangham, A. Bazarbachi, O. Hermine and F. Suarez (2020). « Arsenic trioxide (As2O3) as a maintenance therapy for adult T cell leukemia/lymphoma. » Retrovirology 17(1): 5.
Paubelle, E., F. Zylbersztejn, T. T. Maciel, C. Carvalho, A. Mupo, M. Cheok, L. Lieben, P. Sujobert, J. Decroocq, A. Yokoyama, V. Asnafi, E. Macintyre, J. Tamburini, V. Bardet, S. Castaigne, C. Preudhomme, H. Dombret, G. Carmeliet, D. Bouscary, Y. Z. Ginzburg, H. de The, M. Benhamou, R. C. Monteiro, G. S. Vassiliou, O. Hermine and I. C. Moura (2020). « Vitamin D Receptor Controls Cell Stemness in Acute Myeloid Leukemia and in Normal Bone Marrow. » Cell Rep 30(3): 739-754 e734.
Yang, R., M. Zhan, M. Guo, H. Yuan, Y. Wang, Y. Zhang, W. Zhang, S. Chen, H. de The, Z. Chen, J. Zhou and J. Zhu (2020). « Yolk sac-derived Pdcd11-positive cells modulate zebrafish microglia differentiation through the NF-kappaB-Tgfbeta1 pathway. » Cell Death Differ.
Dagher, T., N. Maslah, V. Edmond, B. Cassinat, W. Vainchenker, S. Giraudier, F. Pasquier, E. Verger, M. Niwa-Kawakita, V. Lallemand-Breitenbach, I. Plo, J. J. Kiladjian, J. L. Villeval and H. de The (2021). « JAK2V617F myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML. » J Exp Med 218(2).
El Hajj, H., R. Hleihel, M. El Sabban, J. Bruneau, G. Zaatari, M. Cheminant, A. Marcais, A. Akkouche, H. Hasegawa, W. Hall, H. De The, O. Hermine and A. Bazarbachi (2021). « Loss of interleukin-10 activates innate immunity to eradicate adult T-cell leukemia-initiating cells. » Haematologica 106(5): 1443-1456.
Geoffroy, M. C., C. Esnault and H. de The (2021). « Retinoids in hematology: a timely revival? » Blood 137(18): 2429-2437.
Gionfriddo, I., L. Brunetti, F. Mezzasoma, F. Milano, V. Cardinali, R. Ranieri, A. Venanzi, S. Pierangeli, C. Vetro, G. Spinozzi, E. Dorillo, H. C. Wu, C. Berthier, R. Ciurnelli, M. J. Griffin, C. E. Jennings, E. Tiacci, P. Sportoletti, F. Falzetti, H. de The, G. J. Veal, M. P. Martelli and B. Falini (2021). « Dactinomycin induces complete remission associated with nucleolar stress response in relapsed/refractory NPM1-mutated AML. » Leukemia.
Yang, R., M. Zhan, M. Guo, H. Yuan, Y. Wang, Y. Zhang, W. Zhang, S. Chen, H. de The, Z. Chen, J. Zhou and J. Zhu (2021). « Yolk sac-derived Pdcd11-positive cells modulate zebrafish microglia differentiation through the NF-kappaB-Tgfbeta1 pathway. » Cell Death Differ 28(1): 170-183.

PdH Student


PdH Student

PhD Student


Morgane Le BRAS



Laurent PERES